The ISIMIP bias-correction method for the PROFOUND sites

Stefan Lange

PROFOUND TG2/3/18 Meeting
9 March 2017
Outline

• Introduction to bias correction
• ISIMIP bias-correction of daily mean temperature
• General bias-correction strategy in ISIMIP2b
• Special approach for forests sector
Bias correction is like cross-multiplication

<table>
<thead>
<tr>
<th>hist</th>
<th>proj</th>
</tr>
</thead>
<tbody>
<tr>
<td>sim</td>
<td></td>
</tr>
<tr>
<td>obs</td>
<td>?</td>
</tr>
</tbody>
</table>
Bias correction is like cross-multiplication

\[
\text{hist} \quad \Delta \quad \text{proj}
\]

\[
\text{sim} \quad \Delta \quad \text{obs}
\]
Bias correction is like cross-multiplication

use knowledge of systematic errors in historical climate model output to correct future climate projections
Bias correction is like cross-multiplication

\[\Delta \text{hist} \quad \Delta \text{proj} \]

\[\text{sim} \quad \text{obs} \]

\[? \]
Bias correction is like cross-multiplication

- hist
- proj
- sim
- obs

quantile mapping etc.
Bias correction is like cross-multiplication

use knowledge of systematic errors in historical climate model output to correct future climate projections
Bias correction of distribution moments

- Bias correction of distribution moments
- Preservation of climate change signals
- Presumes: no change of model biases under climate change
- Equivalent: modelled trends are reliable
Bias correction of distribution moments

preservation of climate change signals
Bias correction of distribution moments

preservation of climate change signals
presumes: no change of model biases under climate change
Bias correction of distribution moments

preservation of climate change signals
presumes: no change of model biases under climate change
equivalent: modelled trends are reliable
ISIMIP bias-correction of daily mean temperature

- time series T_{ymd} for year, month, day
 - $y \in [1979, 2013]$
 - $d \in [1, N_m]$ with $N_m = 31$ for $m = 3$
ISIMIP bias-correction of daily mean temperature

- time series T_{ymd} for year, month, day
 $y \in [1979, 2013]$
 $d \in [1, N_m]$ with $N_m = 31$ for $m = 3$

- monthly mean

\[
T_{ym} = \frac{1}{N_m} \sum_{d=1}^{N_m} T_{ymd}
\]
ISIMIP bias-correction of daily mean temperature

- time series T_{ymd} for year, month, day
 $y \in [1979, 2013]$
 $d \in [1, N_m]$ with $N_m = 31$ for $m = 3$

- monthly mean

$$T_{ym} = \frac{1}{N_m} \sum_{d=1}^{N_m} T_{ymd}$$

- for correction of multi-year monthly mean

$$C_m = \frac{1}{35} \sum_{y=1979}^{2013} \left(T_{ym}^{obs} - T_{ym}^{sim} \right)$$
ISIMIP bias-correction of daily mean temperature

- time series T_{ymd} for year, month, day
 $y \in [1979, 2013]$
 $d \in [1, N_m]$ with $N_m = 31$ for $m = 3$

- monthly mean

\[T_{ym} = \frac{1}{N_m} \sum_{d=1}^{N_m} T_{ymd} \]

- for correction of multi-year monthly mean

\[C_m = \frac{1}{35} \sum_{y=1979}^{2013} \left(T_{ym}^{\text{obs}} - T_{ym}^{\text{sim}} \right) \]

- and of variability of daily values around monthly mean

\[T_{ymd} \mapsto T_{ym} + C_m + B_m \left(T_{ymd} - T_{ym} \right) \]
General bias-correction strategy in ISIMIP2b

- use observational dataset EWEMBI
 - daily
 - global
 - gridded @ 0.5° latitude-longitude

- interpolate GCM data to 0.5° grid

- bias-correct individually for each grid cell and variable
Peculiarities of forests sector

• forest models designed for climate input data from point observations

• point data and grid-cell average data differ in
 • mean (site specifics)
 • variance (scale gap)
 • ...

⇒ special approach:
 • use GCM data from grid cell containing site bias
 • bias-correct using point observations
Collelongo 1996–2014 Mar

- **EWEMBI**
- **Collelongo**
Example

Collelongo 1996–2014 Mar

- EWEMBI
- Collelongo
- IPSL-CM5A-LR
- GFDL-ESM2M
- MIROC5
Example

Collelongo 1996–2014 Mar

- EWEMBI
- Collelongo
- IPSL-CM5A-LR
- GFDL-ESM2M
- MIROC5
- IPSL-CM5A-LR+EWEMBI
- GFDL-ESM2M+EWEMBI
- MIROC5+EWEMBI

The diagram shows the cumulative distribution function (eCDF) of tas [°C] for various models and scenarios over the period 1996–2014 in Collelongo.
Example

Collelongo 1996–2014 Mar

- EWEMBI
- Collelongo
- IPSL-CM5A-LR
- GFDL-ESM2M
- MIROC5
- IPSL-CM5A-LR+EWEMBI
- GFDL-ESM2M+EWEMBI
- MIROC5+EWEMBI
- IPSL-CM5A-LR+Collelongo
- GFDL-ESM2M+Collelongo
- MIROC5+Collelongo
Caveats

- large scale gap between GCM data (some 100 km) and point observations
Caveats

- large scale gap between GCM data (some 100 km) and point observations

- value of variable at GCM scale may not be a good predictor for the value of that variable at point scale
 - topographic effects: rain shadow
 - surface climate conditions: temperature affected by snow-albedo effect
 - high spatiotemporal variability: variables related to clouds

- potential differences between GCM and point scale for climate change-related trends
 - hard to check but worth keeping in mind

- temporal structure of time series
 - sensitivity can be tested using synthetic time series
Caveats

• large scale gap between GCM data (some 100 km) and point observations

• value of variable at GCM scale may not be a good predictor for the value of that variable at point scale
 • topographic effects: rain shadow
 • surface climate conditions: temperature affected by snow-albedo effect
 • high spatiotemporal variability: variables related to clouds

• potential differences between GCM and point scale for
 • climate change-related trends
 → hard to check but worth keeping in mind
 • temporal structure of time series
 → sensitivity can be tested using synthetic time series